• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会

“煤炭液化工业”专题(《煤炭学报》)

来源:煤炭学报

专题整理于2021年5月,为2018—2021年《煤炭学报》刊登的“煤炭液化工业”主题论文。

行业视野

煤化工

类别

86个

关键词

90位

专家

22篇

论文

27245IP

点击量

9924次

下载量
  • 作者(Author): 李军芳, 毛学锋, 胡发亭, 李文博

    摘要:2,6-萘二甲酸(2,6-NDA)是合成聚酯新材料聚萘二甲酸乙二醇酯(PEN)的重要单体,2,6-NDA结构的高度对称性使得PEN具有直链聚合物的特性,这种特性使得PEN在耐热性、阻气性能和化学稳定性等方面具备非常优越的性能。2,6-NDA的合成可通过氧化2-甲基-6-酰基萘得到,其制备过程中的关键步骤为β-甲基萘的酰基化反应。为了揭示β-甲基萘的酰基化反应过程和机理,以Lewis酸AlCl3为催化剂,采用丙酰氯和硝基苯分别作为酰化剂和溶剂对β-甲基萘的酰基化反应进行详细研究。β-甲基萘的酰基化反应结果表明,25 ℃下控制原料物质的量比n(β-甲基萘)∶n(丙酰氯)∶n(AlCl3)=1.0∶1.4∶1.7,在丙酰氯过量的前提下酰化反应5 h,β-甲基萘的转化率为92.53%,目标产物选择性达89.98%,反应得到的酰化粗品用15%的甲醇水溶液进行重结晶精制可得到纯度为99.99%的酰化纯品。采用气相色谱(GC)、质谱(MS)、红外(IR)、核磁(1H-NMR、13C-NMR)及二维核磁解析(gCOSY)对酰化纯品的分子结构进行了详细表征,分析了酰基化产物的官能团信息和分子结构骨架原子信息。结合Chemdraw软件的结构预测对比确认了酰化产物为2-甲基-6-丙酰基萘。β-甲基萘酰化机理分析表明,酰化剂与催化剂形成的活化络合物分子具有较大的尺寸,在进行Friedel-Crafts酰基化反应时,酰化剂与芳烃发生环上亲电取代反应所引起的空间位阻使得酰化剂只能进攻萘环的6号位,导致酰基化反应主要生成2-甲基-6-丙酰基萘。
    免费下载
    煤炭学报
    2020年第12期
    1112
    334
  • 作者(Author): 王琦, 李文博, 毛学锋, 曲思建, 钟金龙

    摘要:为获得煤液化重油芳香分中硫氮化合物的分子组成结构,使用超高分辨率的电喷雾电离源结合傅里叶变换离子回旋共振质谱(ESI FT-ICR MS)对煤液化重油的芳香分进行了分子水平上的表征。结果表明,煤液化重油芳香分中硫氮化合物的分子组成较为复杂,ESI FT-ICR MS鉴定出了826种碱性氮化物、481种中性氮化物和333种含硫化合物的元素组成,正离子ESI模式下鉴定出5类不同分子组成的碱性氮化物,结合甲基衍生化手段鉴定出2类不同分子组成的含硫化合物,负离子ESI模式下鉴定出6类不同分子组成的中性氮化物,其中,碱性和中性氮化物相对丰度最高的均为N1类化合物(含1个N原子的化合物),含硫化合物相对丰度最高的为S1类化合物(含1个S原子的化合物)。通过对各类化合物的等效双键数(DBE)和碳数分布的分析,获得了煤液化重油芳香分硫氮化合物分子组成的重要信息。N1类碱性氮化物主要母核结构为喹啉和吖啶,烷基侧链主要为C8~C17和C6~C11,N1类中性氮化物为主要母核结构为咔唑,带有C9~C14烷基侧链。N1类碱性氮化物的缩合程度和碳数分布均大于N1类中性氮化物,导致加氢过程中碱性N1类化合物较中性N1类化合物更难脱除。S1类含硫化合物的主要母核结构为二苯并噻吩和萘并苯并噻吩,烷基侧链长度在C1~C8,此外含有4~6个苯环的高缩合的噻吩类化合物。
    免费下载
    煤炭学报
    2020年第09期
    1004
    454
  • 作者(Author): 张彦军, 舒歌平, 高山松

    摘要:煤油共炼技术将煤化工技术与劣质重油加工技术耦合,是煤与劣质重油清洁高效利用的重要途径,油煤浆黏温特性是影响规模化制浆、输送、加压、预热设计和生产操作的关键因素。以塔河重油、煤焦油和低阶煤为研究对象,利用热重分析仪、傅里叶红外分析仪、表面孔隙结构分析仪及高温黏度计等,分析了油煤浆浓度、溶剂性质、溶胀时间及煤粉孔隙结构对油煤浆黏度的影响,研究了制浆过程和升温预热过程中油煤浆黏温特性的变化规律。结果表明,制浆过程中质量分数和重质油溶剂性质是影响油煤浆黏度的主要因素;当质量分数大于35%时,油煤浆黏度显著增大;相同条件下,塔河重油煤浆黏度大于煤焦油重油煤浆。随溶胀时间的增加,重质油煤浆黏度整体呈增大趋势;溶胀12 h以后,油煤浆黏度均快速增大,且塔河重油配制的油煤浆黏度增加更快;溶胀作用之后的煤粉颗粒表面形成新的孔隙结构,产生了大量大孔和部分微孔,导致油煤浆黏度增加;油煤浆制备过程中重质油发生脱氢、吸氧缩合反应而导致性质变化也是影响油煤浆黏度的重要因素。升温预热过程,随着温度升高,油煤浆黏度迅速降低;且浓度越高,黏度越大;当温度超过140℃时,黏度均降至较低值;当温度超过240 ℃时,开始出现黏度反增现象,浓度越高煤浆黏度出现反弹的温度越低,反弹幅度越大。
    免费下载
    煤炭学报
    2020年第09期
    877
    434
  • 作者(Author): 武鹏, 吕元, 郭中山, 吕毅军, 吴雷, 徐炎华, 门卓武

    摘要:煤间接液化技术可实现煤的清洁转化,并部分解决石油对外依存的问题,成为我国替代石油和煤炭清洁化利用的有效途径之一。根据工业示范和初步商业化运行暴露的问题以及国内外研究成果,认为制约煤间接液化技术发展的瓶颈主要为:催化剂活性和选择性与国外先进水平存在差异、稳定性亟待提高,单台反应器产能较低,汽柴油产品不合格,提取有机物后合成水变为含盐废水等。为解决上述问题,国家能源集团承担了国家重点研究计划项目—先进煤间接液化及产品加工成套技术开发。本文详细总结了项目研究进展,包括:① 通过对Co2C 介导的原位转晶技术、载体优化及工程放大研究,实现10 kg 级/批费托钴基催化剂中试规模的制备;在公斤级催化剂装量中试装置上C+5时空产率≥0.3 kg油/(kg催化剂·h),CO 转化率≥90%,催化剂单次再生寿命≥6 000 h,已具备工业试验的条件;② 采用原位/非原位技术系统研究了催化剂活性相生成机理,完成铁基催化剂的实验室定型、中试到1 t/d的规模化生产,并在百t油品/a中试装置运行时空产率≥1.0 kg油/(kg催化剂·h),吨油剂耗≤1.0 kg,正在进行工业应用试验;③ 采用气固流化床装置活化费托铁基催化剂,搭建了气固流化床还原平台,完成20 t/批气固流化床的基础设计;④ 采用基于EMMS理论建立二相相互作用模型,并进行了浆态床反应器反应性能和流体力学模拟,并建立CFD-PBM模型,确定了65万t/a扩能改造的技术方案;⑤ 建立费托渣蜡的磁分离的装置、方法,完成20 L/h磁分离研究,分离后铁含量接近0.02%;⑥ 实现了以费托合成蜡为原料采用流化催化裂化技术生产汽油的催化剂和工艺流程实验室定型;⑦ 采用百万吨级煤直接/间接液化工业装置生产的柴油组分进行5 L/批调和,得到满足需求的调和柴油组分;⑧ 完成了采用膜分离技术实现费托合成水脱酸的实验室研究,完成了费托合成水中醇的提取和分离中试试验,以及将提取醇后的费托合成水处理为锅炉用水,实现了费托合成的水资源化利用。突破上述关键技术的瓶颈,并对形成的解决方案进行中试验证,具备条件的进行商业化应用,最后与现有成熟技术集成,形成可生产国六汽柴油产品的先进煤间接液化和产品加工成套技术。
    免费下载
    煤炭学报
    2020年第04期
    相关视频
    2506
    876
  • 作者(Author): 秦绍东, 李加波, 何若南, 杨霞, 段雪成, 孟祥堃, 门卓武

    摘要:Co/Al2O3催化剂在费托合成反应中具有良好的反应性能。采用浸渍法制备了Co/Al2O3催化剂,使用搅拌釜反应器在220 ℃,2.0 MPa,10 000 h-1,H2/CO=2.0(体积比)合成气条件下对催化剂的费托合成反应性能进行了评价,评价结果表明随着反应的进行,催化剂的活性逐渐降低,CH4选择性逐渐升高。为研究Co/Al2O3催化剂在费托合成反应中的失活机理,采用N2物理吸附(BET)、X射线衍射(XRD)、透射电子显微镜(TEM)及程序升温加氢(TPH)对不同时间反应后的催化剂进行了表征。表征结果表明在费托合成反应过程中随着反应时间的延长,Co/Al2O3催化剂的孔结构没有发生显著变化,催化剂中部分CoO相被进一步还原为活性相金属Co。此外,在反应过程中活性相金属Co的晶粒尺寸逐渐发生烧结长大,催化剂表面的积碳量快速的增加。因此,活性相金属Co的烧结与催化剂表面的碳沉积应当是本研究中Co/Al2O3催化剂在费托合成反应过程中发生失活的主要原因。为改进催化剂抗烧结能力,对Al2O3载体的孔结构进行调控,进而控制催化剂中活性相金属Co的晶粒分布,减少易于发生烧结的小晶粒金属Co的生成。此外,通过进一步改进催化剂的配方,成功开发了具有高耐烧结性与抗积碳能力的Co基费托合成催化剂。在搅拌釜反应器中对改进后的催化剂进行了1 800 h的费托合成性能测试,在整个反应过程中催化剂表现出高稳定性与低甲烷选择性。
    免费下载
    煤炭学报
    2020年第04期
    1231
    476
  • 作者(Author): 姜淼, 杜虹, 王国庆, 严丽, 丁云杰

    摘要:氢甲酰化反应是过渡金属羰基化合物催化下的烯烃与合成气生成比原料烯烃高一个碳的醛或醇的反应,全世界通过氢甲酰化反应制备醛或醇的产量可以达到1 200万t/a。均相催化具有较高的催化活性和温和的反应条件,但催化剂同反应物料的分离问题,阻碍了其大规模工业化应用。多相催化体系中催化剂与反应物料容易分离,存在反应活性或选择性较低等问题。均相固载化兼顾了均相催化优异的反应活性和多相催化易于分离的优点,成为氢甲酰化领域的研究热点。Rh是氢甲酰化反应中最活泼的元素,Co的活性相对较低,但其仍具有较大的工业价值。由于贵金属Rh的资源稀缺以及价格昂贵严重影响了氢甲酰化反应过程的经济性,因此,考虑采用金属Co代替金属Rh作为催化剂的活性组分,应用于烯烃的多相氢甲酰化反应。制备了PPh3@POPs担载Co基多相催化剂(Co-PPh3@POPs),系统考察了反应溶剂、金属Co前驱物、金属Co负载量、反应时间等因素对Co-PPh3@POPs催化剂氢甲酰化反应性能的影响。当选取反应溶剂为甲苯,金属Co前驱物为Co(OAc)2,Co负载量为10%时,Co-PPh3@POPs催化剂表现出良好的氢甲酰化反应性能,且反应活性明显优于Co@SiO2和Co@SBA-15催化剂。表征结果显示,Co-PPh3@POPs催化剂具有高的热稳定性、大比表面积和多级孔道结构,较优的催化性能归因于活性组分Co物种可高分散于具有大比表面积和多级孔道结构的含膦聚合物PPh3@POPs载体上。
    免费下载
    煤炭学报
    2020年第04期
    1350
    610
  • 作者(Author): 郭中山, 王峰, 杨占奇, 王铁峰

    摘要:世界上规模最大的400万t/a煤基费托合成装置,于2016年11月首次试车运行,该装置采用中科合成油的中温费托合成技术建设,核心单元由8个年产50万t费托合成中间产物的浆态床反应器组成,具有设备系列多、规模大、配置复杂的特点。装置运行过程中暴露出高温油气分离效果差、产物汽提塔设计不合理、费托合成反应器与脱碳单元难匹配等突出问题。通过近2 a的技术攻关和优化改造,解决了大部分问题,实现了装置安全稳定运行。通过增加旋风分离器数量,减小其尺寸,提高入口油气气速,显著降低了高温油气中夹带的催化剂颗粒量,避免了换热分离器的堵塞,实现了重油、轻油和和合成水的有效分离;从控制换热分离器中重油温度和提高汽提塔重油进料温度两个方面进行优化操作。将换热分离器中水的平衡分压控制在0.26~0.32 MPa时,确保合成水不凝结,且轻质油中不含重油。同时将换热分离器底部重油温度控制在128~135 ℃。另一方面,确保重油进入汽提塔的温度不小于170 ℃,实现了汽提塔热量再平衡,塔底釜温维持在200 ℃以上,确保了汽提塔运行的安全性;将各费托合成反应器出口压力控制在2.3 MPa,并控制各循环气压缩机一段进气量,和提高压缩机二段进气量实现操作调控送入脱碳装置的合成尾气量,提高了费托合成反应器与脱碳单元匹配性,提高了系统运行的稳定性。装置运行标定结果为:CH4选择性为2.90%,C+3选择性平均值为96.1%,C+5选择性达到92.8%,吨油消耗合成气5 686 m3(标准状态),吨产物副产4.5 t中压蒸汽和1.1 t合成水,基本达到设计指标。
    免费下载
    煤炭学报
    2020年第04期
    1502
    519
  • 作者(Author): 王峰, 郭中山, 王铁峰

    摘要:浆态床铁基中温费托(MTFT:260~290 ℃)合成技术首次在国内大规模工业应用,建成400万t/a煤炭间接液化装置,其核心单元费托(F-T)合成装置具有浆态床反应器系列多、规模大、配置复杂的特点,导致装置操作难度大,反应器之间、反应器和下游装置间相互影响、相互干扰较大,降低了系统运行稳定性。工业运行结果表明:MTFT合成中间产品结构发生显著变化。与设计值相比较,蜡减少105.88 万t/a,而重油和轻油分别增加了53.16 万t/a和27.82 万t/a。与低温费托(LTFT)产物相比,MTFT合成中间产物具有α-烯烃质量分数高和C+5收率高的优点,C+5收率达到92.82%,且主要由α-烯烃和正构烷烃组成。轻油中α-烯烃质量分数达到66.34%,其中1-己烯占C6组分总量的62.47%,1-辛烯占C8组分总量70.43%;重油中α-烯烃和正构烷烃组成合计约89.63%,且随着碳数增加,α-烯烃质量分数降低。合成的蜡蒸馏出90%,达到720 ℃。MTFT合成(C+22)的选择性较高,选择性达到59.79%,与LTFT合成蜡选择性相当,但烯烃质量分数高。经过加氢精制和加氢裂化处理,生产的MTFT合成柴油主要由链烷烃组成,具有较高的十六烷值(不小于60),是高品质的洁净燃料,但密度偏低,最高仅为780 kg/m3,达不到车用柴油(GB 19147—2013)规定标准。MTFT石脑油不含环烷烃和芳烃,因此其辛烷值很低(小于50),不能作为汽油调和组分,但可以作为蒸汽裂解生产乙烯和丙烯的优质原料,乙烯的收率可到37.56%,丙烯收率20.16%,三烯总收率>61.82%。针对项目产品结构单一的局限,提出以生产柴油组分为主,联产α-烯烃、液体石蜡、F-T蜡、润滑油基础油等高附加值化工品的技术路线,并逐步实施,取得显著的经济效益。
    免费下载
    煤炭学报
    2020年第04期
    1364
    499

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联