• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会

《洁净煤技术》2020年度高被引论文排行榜

来源:《洁净煤技术》

专题整理于2021年6月。

行业视野

高被引

类别

71个

关键词

69位

专家

15篇

论文

24989IP

点击量

9289次

下载量
  • 作者(Author): 石朝亭, 蔡军, 任强强, 吾慧星, 马海军

    摘要:我国是水泥生产和消费大国,水泥行业已成为我国继热力发电和交通运输之后的第三大NOx排放源,是引起我国雾霾天气的主要成因之一。随着水泥工业NOx排放标准的不断提高,燃煤水泥窑炉低NOx排放控制技术的发展越来越受到重视。为清晰了解水泥行业常见低NOx排放控制技术的优化方向和新型低NOx排放控制技术的发展现状,为水泥工业实现超洁净绿色生产提供技术储备,笔者梳理总结了燃煤水泥窑炉常见低NOx排放控制技术以及新型低NOx排放控制技术。围绕燃煤水泥窑炉常见低氮脱硝技术,阐述了燃烧前、燃烧中以及燃烧后等各种低NOx排放控制技术的降氮原理、特点以及应用现状,并指出了这些技术在实际应用中面临的问题;同时介绍了燃烧前、中、后等各种低NOx排放控制技术的组合应用。重点介绍了近年来新涌现出的以两步还原法为代表且具有潜力的低氮脱硝技术,论述其降氮原理及研究发展现状,对比总结了水泥行业常见低NOx排放控制技术以及新型低NOx排放控制技术的脱硝效率、研究和应用现状。面对日益严峻的减排形式,水泥行业深度脱硝工作的开展势在必行。结合常见低NOx排放控制技术的减排原理、优势以及存在的问题,建议水泥行业可采用燃烧中与燃烧后各种低氮控制技术的组合应用方案,以此达到降本增效的目的,并具体提出了水泥行业现有生产线以及新建生产线可行的组合应用方案。考虑到各种新型低NOx排放控制技术的降氮原理和发展现状,笔者对水泥行业低氮脱硝技术未来的研究和努力方向进行展望,认为未来水泥行业低NOx排放控制技术的发展应注重提高还原氛围下的碳还原能力,以激发碳还原能力为核心进行现有技术的优化以及新技术的探索,同时应考虑到与低氮燃烧技术相匹配的精准自动化、智能化测控设备的应用,以全方位监测、反馈系统的相关指标,更好地发挥低NOx排放控制技术的降氮脱硝效果。
    免费下载
    洁净煤技术
    2020年第01期
    1253
    535
  • 作者(Author): 曲智斌, 孙飞, 皮信信, 郄志鹏, 高继慧

    摘要:中国发电煤耗每年近20亿t,虽然传统湿法脱硫工艺能够实现燃煤污染物SO2的有效控制,但由于存在水耗高、副产劣质石膏量大难用等缺点,面临可持续发展困境。相比之下,基于多孔碳材料的SO2脱除技术由于具备水耗少、无二次污染、污染物可资源化回收、吸附剂可再生利用等优点,是重要的发展方向。笔者综述了目前基于碳材料吸附、催化过程的燃煤烟气硫脱除及资源化研究进展,论述了碳材料资源化脱硫工艺的关键技术环节,最后提出了燃煤烟气硫脱除及资源化的未来科学和技术方向。碳材料内SO2吸附-催化反应机制及产物迁移路径,重点讨论了碳材料孔结构、官能团、金属氧化物负载对SO2吸附转化及副产物迁移的影响。研究表明,碳材料分级孔结构内存在SO2吸附转化以及产物硫酸的迁移过程;在碳材料中掺杂以氮和氧为代表的非碳元素能改变碳平面的电子结构,调控SO2在碳材料中的吸附和催化氧化过程。因此,碳材料孔隙与功能性官能团的协同定向构筑是强化碳材料吸附转化SO2、提升脱硫性能的有效方式。脱硫饱和碳材料再生及硫资源化回收技术路径,重点讨论了碳热还原方法将SO2资源化转化为硫磺的影响因素。热再生能耗高、活性焦质量损失严重;水洗再生效率低,活性焦循环脱硫能力差,高效再生需要活性焦不同尺度孔隙结构的有效配组,以强化物质输运扩散;在各种脱硫副产物中,硫磺物质量小、价值高、便利储运,是理想的资源化回收目标;碳基还原剂活性与选择性的调控是实现高效硫磺生成的关键。论述了高性能煤基活性焦的低成本宏量制备方法,重点讨论了强化脱硫过程的分级孔活性焦低成本制备方法。传统柱状活性焦制备工艺复杂、成本高且孔隙结构呈微孔分布,存在内扩散阻力大、内表面利用率低、SO2脱除及再生脱附性能差等问题。破碎或颗粒状活性焦有望降低活性焦制备成本且实现活性焦孔隙的深度调控,但结构稳定性(强度)的提升是关键。通过催化活化、配煤、催化石墨化方法,可望实现兼具高活性和高结构稳定性的脱硫活性焦制备。
    免费下载
    洁净煤技术
    2020年第01期
    1163
    734
  • 作者(Author): 杜俊涛, 聂毅, 吕家贺, 马江凯, 郏慧娜, 张敏鑫, 孙一凯, 郑双双, 白璐

    摘要:中间相炭微球(MCMB)具有良好锂离子扩散性、导电性和机械稳定性等优势,是目前应用广泛、综合性能优异的锂离子电池负极材料,但较低理论比容量是制约其发展的关键因素。为了获得性能优良的MCMB基锂离子电池负极材料,改性修饰和复合材料已然成为目前研发重点。笔者论述了碳结构、表界面和复合材料等微观结构设计对MCMB负极材料电化学性能的影响。从碳堆积结构类型、有序性、层间距以及球体粒径大小等方面,论述了碳结构微观设计对MCMB电化学性能的影响。发现具有乱层结构的MCMB在充放电过程中内部产生应力较小,且碳结构较稳定,具有优异循环稳定性;内部具有大量微孔或碳层间距较大的MCMB,在充放电过程中可提高锂离子在电极中的迁移速率,并提供更多的储锂空间,一般具有优良的充放电比容量和倍率性能;小粒径MCMB具有较短的锂离子迁移路径和随之增加的比表面积,通常具有较好倍率性能,伴随着可逆比容量和充放电效率的衰减。从表界面碳层改性、包覆和掺杂改性等方面,论述了表界面改性对MCMB电化学性能的影响。表面碳层修饰可增加MCMB与电解液的相容性及其比表面积,提高了与电解液的接触面积及贮锂容量,改善了锂离子电池负极材料的电化学性能;另外,MCMB表面包覆一层无定型碳,可避免其表面与电解液直接接触,减少电化学副反应的产生,提升其可逆比容量。从碳活性物质复合材料、非碳活性物质复合材料等方面,论述了复合材料微观结构设计对MCMB电化学性能的影响。碳活性物质可降低MCMB内部碳层结构的有序性,减少锂离子嵌入过程中的内部应力,提升MCMB循环稳定性。非碳活性物质诱导MCMB生成更加有序的碳层结构,提高MCMB的比表面积,从而改善MCMB表面与电解液分子的接触能力及其嵌锂性能,有利于提升MCMB负极材料可逆比容量、循环性能和倍率性能。MCMB具有高碳层间距和多缺陷位点等结构特征,有利于钠离子自由脱嵌,应用于钠离子电池时具有良好的可逆比容量、循环稳定性和倍率性能。MCMB的不规则定向层状结构经活化等处理具有较高比表面积,可应用于超级电容器电极材料。最后提出在高性能锂离子电池电极材料快速发展的需求下,从微观结构角度设计MCMB纳米复合材料将是MCMB负极材料的研究重点。
    免费下载
    洁净煤技术
    2020年第01期
    1927
    554
  • 作者(Author): 胡发亭, 王学云, 毛学锋, 李军芳, 赵鹏

    摘要:煤直接液化制油技术是促进煤炭清洁高效利用、缓解石油供需矛盾、保障我国能源安全的重要途径。为全面了解煤液化反应机理、动力学、催化剂及工艺的全过程,促进煤直接液化技术基础研究的快速进步和新工艺的开发,笔者综述了国内外在煤加氢液化反应机理、反应动力学、催化剂以及液化工艺方面取得的研究成果,重点介绍了德国IGOR、日本NEDOL和我国的神华煤液化工艺,分析了这些典型煤液化工艺的开发历程和特点;指明了煤直接液化制油技术发展趋势。煤的加氢液化反应是自由基反应机理,是一系列顺序反应和平行反应的综合结果,包含煤的热解、自由基加氢、脱杂原子和缩合反应等,总体上以顺序反应为主。借助同位素示踪、原位实时检测、等离子体技术以及微波快速加热技术等现代分析方法和试验手段,重点研究自由基的产生速率、活性氢产生速率及定量传递机理,有助于深入认识和精准阐明煤加氢液化反应机理。各国学者利用不同的研究方法,针对不同煤种、催化剂、工艺条件和供氢溶剂等,建立了各种各样的动力学模型。动力学模型从单组分到双组分和多组分,从连续反应、平行反应到复杂的网络反应,从最初的一步反应到后来较为合理的多段反应,模型越来越复杂,越来越接近工业应用。根据反应阶段不同进行分段处理的多组分“集总”反应动力学模型将是今后煤加氢液化反应动力学发展的主要方向。借助先进分析手段及科学的处理方法,建立真正揭示不同条件下煤液化动力学规律的通用型动力学模型是未来的发展趋势。借助纳米合成、等离子体等高新技术,调控组分配伍、降低催化剂粒径、优化制备方法是制备高活性催化剂的有效手段。强化系统合理配置和优化集成,重视煤的温和液化和分级转化,优化产品结构,发展直接液化-间接液化耦合技术是煤直接液化未来的发展趋势。
    免费下载
    洁净煤技术
    2020年第01期
    1314
    856
  • 作者(Author): 张平, 陈陆剑, 江华, 张缦, 徐巍, 刘实, 杨海瑞, 吕俊复

    摘要:循环流化床锅炉大比例掺烧煤泥是一种处理煤泥等低品质煤的有效手段。利用一维小室模型对掺混不同比例煤泥的CFB锅炉运行工况进行模拟,研究了掺混煤泥比例对CFB锅炉炉膛内物料平均粒径、颗粒停留时间以及炉膛上部物料浓度的影响,确定了大比例掺烧煤泥条件下的流态优化条件。模拟结果表明,增加煤泥比例可以提高物料循环流率和中间粒径档位(0.1~0.3 mm)颗粒在炉内的停留时间,改善燃料的燃尽率,提高煤泥比例还可以增加炉膛上部的颗粒浓度,有利于提高炉膛上部的传热,降低炉膛温度,便于污染物的控制。根据盘北电厂300 MW循环流化床锅炉机组大比例掺烧煤泥的运行数据,分析了掺烧煤泥比例对床温、排烟温度、底渣与飞灰含碳量的影响。当锅炉负荷为300 MW时,掺烧煤泥后床温明显降低,飞灰含碳量和排烟温度随着掺烧煤泥比例的增加而增大,底渣含碳量则随着掺烧煤泥比例的增加而降低。为了实现大比例掺烧,建议控制矸石的入炉煤粒径,且需要强化尾部吹灰或适当调整尾部受热面。
    免费下载
    洁净煤技术
    2020年第01期
    784
    476
  • 作者(Author): 朱书骏, 朱建国

    摘要:随着我国经济的飞速发展,作为重要基础材料的水泥产品需求量极大且趋于稳定。水泥生产过程中的NOx排放与燃煤火电厂和汽车尾气产生的NOx排放已成为空气污染的主要来源,而分解炉是降低水泥生产工艺中NOx排放的有效设备。笔者在引入高温烟气的模拟分解炉内进行空气分级燃烧试验,研究配风位置、配风比例以及石灰石/煤比例对分解炉内燃烧和NOx排放特性的影响规律。试验稳定过程中,高温烟气发生装置的给煤量和配风量保持不变。此时,高温烟气发生装置的时间平均温度为911 ℃,其产生的高温烟气温度稳定在750 ℃左右,高温烟气中NOx主要以NO和N2O的形式存在,其浓度分别为261.49×10-6和12.96×10-6。该股高温烟气将模拟实际回转窑产生的烟气进入分解炉内。在分解炉的上部区域(距离顶部0~2 000 mm区域)的温度为800~1 000 ℃,与实际分解炉运行温度一致,排放烟气中NOx主要以NO和N2O形式存在。随着中间配风位置的下移,煤粉燃烧放热区域下移,而顶部区域的石灰石吸热量变化较小,则原有热量平衡被打破且原有吸热量高于现有放热量,导致顶部区域内燃烧温度降低。此时,还原气氛中煤粉燃烧和石灰石分解反应时间均变长,导致NOx的还原反应更加充分。但石灰石分解产生的氧化钙(CaO)作为中间产物会促进NO的生成反应,其反应时间增加也促进了NO的生成;另一方面,石灰石作为催化剂参与焦炭和挥发分还原NO的反应过程,分解炉顶部区域的温度下降使得该还原反应变弱。综上,NO的最终排放浓度是以上反应的综合结果。随着配风位置的下移,该变化对NO的生成作用更加明显,故NO的排放浓度逐渐升高。当一级风量与二级风量的配风比例降低时,分解炉上部区域的煤粉燃烧份额减少和石灰石分解量降低,而分解炉下部区域的煤粉燃烧份额增加和未分解的石灰石份额增加,但石灰石的吸热增加量高于燃烧增加份额的放热量,因此分解炉内整体温度均降低。分解炉内NO浓度是由石灰石催化的氧化过程和还原过程综合决定的。一级风量变小时,尾部CO浓度随之增加,烟气中NO浓度呈现降低的趋势。当石灰石/煤比例增加时,分解炉内沿程温度逐渐下降。随着石灰石给粉量增加,分解炉内石灰石受热分解产生的CaO浓度增加,CaO催化NO还原反应更剧烈,从而NO浓度逐渐降低。而石灰石给粉量增加和分解炉温度降低的过程导致尾部的CO浓度升高。
    免费下载
    洁净煤技术
    2020年第01期
    944
    507
  • 作者(Author): 周建明, 崔豫泓, 贾楠, 崔名双, 张斌, 王彩虹

    摘要:中国煤粉工业锅炉借鉴油气锅炉和德国煤粉工业锅炉技术理念,经历立项研发、中试验证和工业示范,系统技术逐步成熟,自2010年起,实现规模化工业应用。煤粉工业锅炉系统具有高热效率、低烟气污染物排放等优点,有效带动了燃煤工业锅炉产业发展。笔者论述了煤粉工业锅炉技术与发展,重点介绍了煤粉工业锅炉的关键技术,并对主要技术进行对比,分析了煤粉工业锅炉的工业应用情况,最后提出了煤粉工业锅炉技术发展方向。煤粉工业锅炉系统由燃料煤粉生产、储供、油气点火、燃烧、锅炉本体、烟气净化以及自动化控制等系统构成。锅炉热效率大于91%,烟气污染物达到国家超低排放标准,系统技术符合国家煤炭清洁利用方向。燃料煤粉生产采用一步法工艺,通过强化流动性和安全措施,现可实现最大为1 000 m3安全存储量。锅炉供粉采用气动活化、无脉动给料及高速引射流浓相输送技术,已实现输送阻力低于20 kPa,粉风固气比大于2.5 kg/m3,供料精度在±3.0%以内,最大供料量为5 t/h的浓相供料技术与装备,广泛应用于锅炉供料系统。供料量在2.5 t/h,供料精度在±2.0%和±1.0%以内的第三代和第四代供料器也分别开展了工业验证和样机的试制工作,并取得了阶段性的成果。煤粉燃烧器采用逆喷式回流式结构,设计工作依据其结构特征,通过模拟气流扩展角、回流区域范围、回流量、旋流强度以及温度和速度场等研究开展,再经过实际工程应用,进一步验证优化设计参数,最终实现燃烧器的逐级放大。天然气/煤粉双燃料燃烧器具有便捷切换和快速着火功能。风冷燃烧器采用内外双级旋流供风燃烧技术,具有点火迅速、燃烧稳定、燃烧效率高和初始NOx排放低等优点。随着煤粉锅炉系统测控技术向智能化、网络化和集成化方向发展。锅炉烟气脱硫除尘采用NGD高倍率灰钙循环脱硫技术,具有占地小,运行成本低等特点,在低钙硫摩尔比下,系统脱硫和除尘效率分别达到90%和99.95%以上。低温炭基预氧化脱硝耦合NGD协同烟气净化技术具有工艺简单,耗水少,废物资源再利用,无二次污染产生等优点,更加适合于煤粉工业锅炉的烟气净化。煤粉工业锅炉在发展历程中通过关键技术和装备优化升级,在大型化、模块化和系列化方向已取得成效,在节能性、环保性和经济性等方面较常规工业锅炉具有显著优势,技术已达到世界先进水平。未来随着国家能源结构优化,天然气/煤粉锅炉、低氮燃烧、生物质复合半焦粉及协同化烟气净化等技术的开发与成熟,煤粉工业锅炉技术将成为煤炭清洁燃烧利用主要技术之一。
    免费下载
    洁净煤技术
    2020年第01期
    993
    717

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联