-
作者
Eloy Pe?a-Asensio Josep M.Trigo-Rodríguez Jordi Sort Jordi Ibá?ez-Insa
-
单位
Department of Aerospace Science and Technology,Politecnico di MilanoInstitut de Ciències de l'Espai (ICE-CSIC),Campus UABInstitut d'Estudis Espacials de Catalunya (IEEC)Departament de Física,Universitat Autònoma de BarcelonaInstitució Catalana de Recerca i Estudis Avan?ats (ICREA)Geosciences Barcelona (GEOCN-CSIC)Departament de Química,Universitat Autònoma de Barcelona
-
摘要
Amid the scarcity of lunar meteorites and the imperative to preserve their scientific value, nondestructive testing methods are essential. This translates into the application of microscale rock mechanics experiments and scanning electron microscopy for surface composition analysis. This study explores the application of Machine Learning algorithms in predicting the mineralogical and mechanical properties of DHOFAR 1084, JAH 838, and NWA 11444 lunar meteorites based solely on their atomic percentage compositions. Leveraging a prior-data fitted network model, we achieved near-perfect classification scores for meteorites, mineral groups, and individual minerals. The regressor models, notably the KNeighbor model, provided an outstanding estimate of the mechanical properties—previously measured by nanoindentation tests—such as hardness, reduced Young's modulus, and elastic recovery. Further considerations on the nature and physical properties of the minerals forming these meteorites, including porosity, crystal orientation, or shock degree, are essential for refining predictions. Our findings underscore the potential of Machine Learning in enhancing mineral identification and mechanical property estimation in lunar exploration, which pave the way for new advancements and quick assessments in extraterrestrial mineral mining, processing, and research.
-
基金项目(Foundation)
financialsupportfromtheprojectPID2021-128062NB-I00fundedbyMCIN/AEI/10.13039/501100011033;fundingfromtheEuropeanResearchCouncil(ERC)undertheEuropeanUnion’sHorizon2020researchandinnovationprogramme(No.865657)fortheproject‘‘QuantumChemistryonInterstellarGrains”(QUANTUMGRAIN);financialsupportfromtheFEDER/MinisteriodeCienciaeInnovación–AgenciaEstataldeInvestigación(No.PID2021126427NB-I00);PartialfinancialsupportfromtheSpanishGovernment(No.PID2020-116844RB-C21);theGeneralitatdeCatalunya(No.2021-SGR-00651);supportedbytheLUMIOprojectfundedbytheAgenziaSpazialeItaliana(No.2024-6-HH.0);
-
文章目录
1. Introduction
2. Meteorites samples
3. Methods and procedures
3.1.SEM mineral identification
3.2.Nanoindentation
3.3.Machine learning techniques
3.3.1.Classification task
3.3.2.Regression models
4.Results and discussion
4.1.TabPFN to classify lunar meteorites and their constituent minerals
4.2.T prediction of mechanical properties with regression models
5.Conclusions
Supplementary material
-
引用格式
[1]Pe?a-Asensio E ,M.Trigo-Rodríguez J ,Sort J , et al.Machine learning applications on lunar meteorite minerals: From classification to mechanical properties prediction[J].International Journal of Mining Science and Technology,2024,34(09):1283-1292.