• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于双目视觉技术的煤矿救援机器人研究进展
  • Title

    Research progress of coal mine rescue robot based on binocular vision technology

  • 作者

    翟国栋张文涛岳中文潘涛胡文渊卢杏浩

  • Author

    ZHAI Guodong, ZHANG Wentao, YUE Zhongwen, PAN Tao, HU Wenyuan, LU Xinghao

  • 单位

    中国矿业大学(北京) 机电与信息工程学院中国矿业大学(北京) 力学与建筑工程学院神华信息技术有限公司智能矿山(煤炭行业)工程研究中心福建省信息处理与智能控制重点实验室

  • Organization
    1.School of Mechanical Electronic & Information Engineering, China University of Mining and Technology-Beijing, Beijing , China;2.School of Mechanics and Civil Engineering, China University of Mining and Technology-Beijing, Beijing , China;3.Shenhua Information Technology Co., Ltd., Beijing , China;4.Intelligent Mine(Coal Industry)Engineering Research Center, Beijing ,China;5.Fujian Provincial Key Laboratory of Information Processing and Intelligent Control(Minjiang University),Fujian Fuzhou , China
  • 摘要

    针对煤矿事故后的环境探测和紧急救援任务,研发和使用煤矿救援机器人是提高救援效率和降低救援危险系数的关键途径,而双目视觉技术是煤矿救援机器人获取事故现场信息和实现自主避障及路径规划的前提。首先,基于双目视觉技术的实现流程,介绍了视觉测距的数学原理。归纳了目前摄像机标定领域的代表性方法,包括传统标定方法、主动视觉标定方法和自标定方法。阐述了立体视觉匹配中全局匹配算法、局部匹配算法和亚全局匹配算法的最新研究成果,并比较了3类匹配算法的优缺点。然后,在近十年煤矿救援机器人研究文献的基础上,回顾了双目视觉技术在煤矿救援机器人中的应用和发展情况。结果表明,研究范围主要涵盖立体视觉匹配算法、模式分类与识别、视觉测量与3维重建、组合测量与定位、视觉伺服控制和基于虚拟现实技术的视觉算法仿真等方面。最后,根据煤矿非结构化环境的高动态和强干扰特点,总结了运动模糊和镜头污染、超广角镜头的非线性大幅畸变、弱/零照度条件等3项煤矿救援机器人双目视觉现场应用所面临的技术难题。根据煤矿救援机器人双目视觉的大视场、高精度、自适应感知等要求,提出了包括多自由度测量、多传感器信息融合、基于主动视觉的自适应感知等在内的3项未来发展建议。

  • Abstract
    In view of the environmental detection and emergency rescue missions after coal mine accident, the development and use of coal mine rescue robots is a key way to improve rescue efficiency and reduce rescue hazard coefficients, and the binocular vision technology is the premise for the coal mine rescue robot to obtain the accident site information and achieve the autonomous obstacle avoidance and route planning.Firstly, based on the realization process of binocular vision technology, the mathematical principle of visual distance measurement was introduced.The representative methods in the field of camera calibration were summarized, including traditional calibration methods, active vision calibration methods and self-calibration methods.The latest research results of global matching algorithm, local matching algorithm and sub-global matching algorithm in stereo vision matching were described, and the advantages and disadvantages of three kinds of matching algorithms were compared.Then, based on the analysis of recent research literature on coal mine rescue robots, the application and development of binocular vision technology in coal mine rescue robots were studied.It was pointed out that the research scope of binocular vision technology in the field of coal mine rescue robots mainly covers stereo vision matching algorithm, pattern classification and recognition, visual measurement and 3D reconstruction, combined measurement and positioning, visual servo control and visual algorithm simulation based on virtual reality.Finally, based on the characteristics of high dynamic and strong disturbance in the unstructured environment of coal mines, It was pointed out that the key technology of coal mine rescue robot binocular vision field application is to solve the problems of motion blur and lens pollution, large nonlinear distortion of ultra-wide-angle lens, and weak/zero illumination conditions.According to the requirements of binocular vision of coal mine rescue robot, such as large field of view, high-precision and adaptive perception, the suggestions for future development, including multi-degree-of-freedom measurement, multi-sensor information fusion and adaptive perception based on active vision, were proposed.
  • 关键词

    煤矿救援机器人双目视觉摄像机标定立体视觉匹配自由度传感器信息融合主动视觉煤矿智能化智能矿山

  • KeyWords

    coal mine rescue robot; binocular vision; camera calibration; stereo vision matching;emergency rescue;information fusion; active vision

  • 相关专题
  • 图表
    •  
    •  
    • 双目测距原理

    图(9) / 表(0)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联