• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
多相机重叠视域下的筛上杂物检测与跨镜追踪
  • Title

    Target tracking method for impurities on desliming screen

  • 作者

    刘钦聚王斌赵轩吕子奇

  • Author

    LIU Qinju;WANG Bin;ZHAO Xuan;LYU Ziqi

  • 单位

    国能神东煤炭集团有限责任公司中国矿业大学(北京)化学与环境工程学院

  • Organization
    CHN Energy Shendong Coal Group Co. , Ltd.
    School of Chemistry and Environmental Engineering, China University of Mining and Technology-Beijing
  • 摘要

    传统杂物检测方法在脱泥筛中应用时,杂物的位置和运动轨迹随着筛机震动难以预测,且视野受到激振器等设备的遮挡,导致目标杂物在盲点区域内发生轨迹偏移。针对以上问题,提出了一种多相机重叠视域下的筛上杂物检测与跨镜追踪方法,利用两台相机协同工作。其中,第一台相机使用YOLOv5对杂物做目标检测,确定杂物位置并将结果映射到第二台相机的视域内。第二台相机基于SORT算法对初始帧初始坐标进行追踪,实时监测和更新杂物的轨迹。该方法在提高检测准确性和追踪效率的同时,降低了计算复杂性。

  • Abstract

    When the process traditional impurity detection methods is applied to desliming screens, the positions and trajectories of impurities on desliming screens are difficult to predict, and the field of view can be obstructed by equipment like exciters, leading to trajectory deviations of target impurities within blind spots. Aiming at the above problems, we propose a method for impurity detection on desliming screens and cross-camera tracking in an overlapping multi-camera field of view. It involves the collaborative work of two cameras. The first camera employs the YOLOv5 algorithm for impurity target detection, determining impurity positions and mapping the results into the field of view of the second camera. The second camera, using the SORT algorithm, tracks the initial coordinates from the first frame, continuously monitoring and updating the trajectories of impurities. This method not only enhances detection accuracy and tracking efficiency but also reduces computational complexity.

  • 关键词

    筛上杂物检测跨镜追踪目标检测YOLOv5

  • KeyWords

    screening impurity detection; cross-camera tracking; object detection; YOLOv5

  • DOI
  • 引用格式
    刘钦聚, 王 斌, 赵 轩, 等. 多相机重叠视域下的筛上杂物检测与跨镜追踪 [J].煤炭工程, 2023, 55(S1): 231-237.
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联