• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会

《洁净煤技术》优秀论文评选结果 | 2023年

来源:洁净煤技术

2023年度优秀论文评选活动于2023年12月05日开通投票通道,2023年12月29日截止。根据投票结果,评选出以下获奖论文。恭喜获奖论文作者及团队!编辑部将联系获奖作者发放优秀论文证书及奖励。

行业视野

洁净煤技术

类别

107个

关键词

107位

专家

20篇

论文

17167IP

点击量

12915次

下载量
  • 作者(Author): 王萍萍, 赵永椿, 张军营, 熊卓

    摘要:碳计量是碳交易市场稳定发展的基石,是国家制定碳减排政策的数据依据。燃煤电厂作为我国最大的碳排放源之一,准确量化燃煤电厂碳排放量对我国双碳目标的达成具有重要意义。首先,介绍了国内外碳核算标准及相关政策,欧美等发达国家发展较早,初步形成了各自的碳排放计量方法体系。美国火电厂主要采用实测法核算碳排放量,将相关技术标准和规范写入法规,规定25 MW以上燃煤机组必须采用实测法并上交温室气体强制性报告;欧盟目前的碳计量采用核算法和实测法并行,根据电厂碳排放量划分层级并规定不确定度要求,同时欧盟的碳交易市场发展迅速,为其他国家碳交易市场建设提供参考。相比欧美等发达国家,我国目前尚缺少完整的碳核算体系,实测法处于初步发展阶段,缺少碳核算数据库,标准体系有待完善。其次,基于核算法和实测法分别介绍了目前燃煤电厂碳计量的排放因子法、物料衡算法、实测法、生命周期法和模型法的发展现状,并对其优缺点和适用范围进行总结。排放因子法应用范围最广,计算过程较简单,但直接运用IPCC指南的排放因子缺省值计算我国燃煤电厂碳排放误差较大;物料衡算法利用碳平衡计算燃煤电厂碳排放量,但计算中间过程较多,需完整数据才可获得准确的碳排放量;实测法与其他计算方法不同,可直接测量烟气流量与烟气中CO2浓度,在我国政策推动下快速发展;生命周期法可加入电力生产阶段的上下游碳排放,故可扩大核算边界;模型法可直接预测碳排放量或元素碳含量,弥补关键核算数据缺失问题。论述了核算法和实测法数据对比现状,阐明核算法的主要误差来源为排放因子和净热值等数值的选取与测量,实测法的主要误差来源为烟气流量和CO2浓度测量,实测法的精度一般高于核算法。最后,从碳交易市场发展、不确定来源探究、碳排放政策法规制定等方向进行展望,以期为制定中国特色的燃煤电厂碳排放计量方法体系提供参考。
    免费下载
    洁净煤技术
    2022年第10期
    772
    497
  • 作者(Author): 江涛, 魏小娟, 王胜平, 马新宾

    摘要:化石燃料的大规模使用造成了CO2排放量逐年递增,其作为温室气体的主要成分加速了全球变暖及气候变化。CO2的捕集、利用与存储(Carbon Capture, Utilization and Storage,简称CCUS)技术作为降低碳排放的有效方法,受到广泛关注。在诸多减少CO2排放量的方法中,吸附法分离脱除CO2具备良好的应用前景。固体吸附材料具有操作温度广、不易腐蚀设备、循环使用过程中产生的废物较少且易于处理等优点,被认为是理想的CO2捕集材料。综述了3种类型的CO2固体吸附剂的研究进展,包括低温、中温和高温固体吸附剂,指出了其优点和局限性及强化CO2吸附性能与循环稳定性的措施。通常来说高压对低温固体吸附剂更加有利,但此条件下其选择性较差,且气流中存在的水分会水解某些吸附剂中的配位键,并与CO2产生竞争吸附,导致CO2吸附性能下降。因此低温吸附剂的吸附能力、吸附选择性和水热稳定性是研究重点。中温固体吸附剂中,类水滑石材料面临的挑战在于其独特的氢键堆积结构限制了其吸附容量进一步提高,而MgO吸附剂由于缺少基础活性位点以及固有的高晶格焓同样导致其吸附性能与吸附动力学较差。故中温吸附剂需要优先解决其低吸附能力和低循环稳定性的问题。高温固体吸附剂中,Li4SiO4吸附剂相比于Li2ZrO3吸附剂具备更低的制备成本以及更高的吸附容量,但2者皆面临动力学限制问题。CaO基吸附剂由于其理论吸附容量高、适用范围广、成本低廉、无毒、具备快速的吸附动力学特性等优点受到广泛关注。而在CO2吸附/脱附多循环过程中,钙基吸附剂由颗粒烧结引发的热失活以及颗粒磨损问题是限制其进一步发展的最大障碍。针对这些问题可采用高温预处理、水合作用、化学掺杂、酸改性等方式来提高其吸附性能与多循环稳定性。此外,造粒及规模化制备技术是提高其工业应用潜力需解决的瓶颈问题。
    免费下载
    洁净煤技术
    2022年第01期
    1139
    646
  • 作者(Author): 徐连兵

    摘要:在全球能源向清洁化、低碳化、智能化发展的趋势下,发展氢能源产业已成为当前能源技术变革的重要方向,对我国实现新时代能源转型意义重大。基于此,对我国氢能源利用前景与发展战略开展系统研究。首先,结合我国氢能源产业链特点,从制氢、储氢、用氢等方面阐述了我国氢能源发展现状,在制氢方面,我国每年氢气产能约4 100万t、产量约3 342万t,是全球最大的产氢国;在氢气储运方面,由于应用规模小、技术装备水平低等因素,我国氢能源运输能力建设严重滞后,与国外存在显著差距;在加氢站建设方面,我国已建成运营加氢站127座,加氢站的设计、建设以及三大关键设备均实现国产化;在用氢产业方面,我国在交通领域、发电领域以及其他信息领域得到一定程度的商业化应用,特别是氢燃料电池产业得到快速发展。其次,对我国氢能源利用存在主要问题进行了深入分析,认为当前我国氢能源产业集群发展初见成效,但与国际氢能源发展相比,我国氢能源开发利用面临严峻挑战,特别是在燃料电池技术发展、氢能源产业装备制造等方面,缺少立足长远的国家氢能源发展战略与综合规划,亟待从发展战略与规划、基础研究、应用研究、产品开发、规范标准、性能测试、技术实证、商业创新等方面全面研究与布局。最后,对我国氢能源利用前景与应用场景进行系统分析,提出推进氢能源利用的战略举措和建议:在战略举措方面,一是要契合国家战略,坚持规划引领,做好氢能源产业发展战略规划;二是应突出平台效应,协同创新发展,发挥好各类核心氢能源产业化平台作用;三是要加强科技创新,深化产学研合作,加强协同创新,充分发挥科技创新在全面创新中的引领作用;四是健全人才机制,打造核心优势,充分调动科技人员的积极性和创造性。在政策建议方面,需进一步强化氢能源在国家能源体系中的重要地位,加强核心技术自主研发与技术标准体系建设,因地制宜选择氢能源产业发展路线,并适当引导国有资本在氢能源产业的优化布局,确保我国氢能产业的健康持续发展。
    免费下载
    洁净煤技术
    2022年第09期
    808
    504
  • 作者(Author): 范宁, 张逸群, 樊盼盼, 樊晓婷, 王婕, 王建成, 董连平, 樊民强, 鲍卫仁

    摘要:我国能源结构特点为富煤、贫油、少气,煤化工行业发展充满机遇和挑战。煤气化技术是现代煤化工的前端支柱,是实现煤炭清洁、高效、绿色、低碳利用的有效途径,具有重要的国家战略意义。煤气化技术规模化应用产生的大量固体废弃物(煤气化渣)的处置,是煤化工基地当前迫切需要解决的问题。分别从国内具代表性煤化工基地的气化灰渣粒度组成、矿物构成、微观形貌、表面性质和持水特性等理化性质入手,对比分析不同炉型、产地、气化工艺等条件下的灰渣特点。灰渣物性特点的差异化与气化工艺、炉型、煤种等因素均相关。灰渣主要组分为硅铝矿物等,其中粗渣粒度普遍偏大;细渣残炭质量分数一般在20%左右,且其表面含氧官能团丰富。此外,细渣因其孔隙率高,含水率较高。基于气化灰渣理化性质,系统归纳了目前报道的气化灰渣提质方法,提出炭-灰分离是实现气化灰渣减量化与资源化利用的重要前提。从高效回收微细粒矿物角度考虑,浮选是最合适的炭-灰分离方法,但由于残炭发达的孔隙结构与含氧亲水性基团的存在导致可浮性差,目前生产成本较高;从降低生产成本、提高处理量角度考虑,重力分选方法是首选,但存在分选下限高的问题;而磁力分选则对铁磁性矿物含量高的灰渣更具有针对性,不具有普遍适用性。综上分选分离方法特点,研制规模化分选设备、研发新型高效浮选药剂与浮选方法及开发高效低耗的气化灰渣分级分选的联合分选工艺是后续炭-灰分离领域的研究重点。此外,系统总结了气化灰渣资源化利用研究进展。建工建材等应用领域可实现气化灰渣的规模化消纳,是提高固废综合利用率的首要利用方向,但需进一步研究气化灰渣干燥脱水、重金属析出等后续问题;生态修复、锅炉掺烧、碳材料制备、吸附/催化剂制备等领域可实现气化灰渣的高值化利用,亦应充分考虑市场容量问题。以下游市场为导向,综合考虑技术现状、成本核算、市场消纳等因素,结合高效分离与分质利用理念,是实现气化灰渣资源化利用的有效途径,保证企业效益和环保效益,同时也是实现煤化工产业高端化、多元化、低碳化发展的重要补充。
    免费下载
    洁净煤技术
    2022年第08期
    777
    476
  • 作者(Author): 张自丽, 孙光, 段伦博

    摘要:污泥与煤以一定比例掺烧,有望提高其综合燃烧性,促进污泥的减量化、无害化处理处置及资源化利用。前人对污泥与煤的燃烧及掺烧特性进行了大量的研究,但对燃料中N、S的赋存形态及其对污染物释放的影响,以及污染物在掺烧交互作用中的减排机制尚不清楚。利用热重傅里叶红外联用技术研究了市政污泥与徐州烟煤掺烧综合燃烧性能、交互作用及动力学特性,重点讨论了燃料中N、S赋存形态以及热转化规律。结果表明:污泥与煤掺烧在300~750 ℃存在显著交互作用,并有利于提高其燃烧性能,随着污泥比例增加,混合样着火温度和燃尽温度逐渐降低。动力学结果表明,掺烧活化能介于两单样之间,掺烧少量污泥的反应机理与煤接近。污泥中N主要以吡咯氮(90.58%)和季氮(9.42%)形式存在,其分解导致大量NH3及HCN释放;而烟煤中主要以吡咯氮(N-5)的形式存在,其分解主要以NO和HCN逸出;污泥与煤掺烧过程中氮化物排放强度均低于两单样。污泥中S主要为砜硫和非芳香硫类有机硫化合物,其在400 ℃前分解并释放大量SO2。而烟煤中S元素主要以硫酸盐(66.24%)、硫铁矿(21.97%)和噻吩硫(11.79%)的形式存在,由于其硫化物稳定性高,在350~650 ℃其硫化物发生分解并释放SO2。
    免费下载
    洁净煤技术
    2022年第03期
    549
    558
  • 作者(Author): 邹仁杰, 罗光前, 吕敏, 方灿, 王莉, 付彪, 李泽华, 李显, 姚洪

    摘要:煤炭清洁高效利用是推动我国能源结构低碳绿色转型的重要途径。重金属作为燃煤主要污染物之一,对人类及生态环境危害巨大,目前美国已开始执行燃煤电厂重金属排放标准,主要通过选煤技术降低重金属源头生成以实现达标排放。我国煤炭用量大、部分煤种重金属含量高、地区差异大,亟需开发符合我国国情的重金属控制技术。以挥发性强、毒性高的3种典型重金属砷、硒、铅为对象,总结了国内外燃煤电厂重金属排放现状及控制技术进展。我国煤电污染物超低排放技术路线对重金属具有一定的协同控制效果,其中硒较多以气态形式存在,集中在湿法烟气脱硫系统内洗涤脱除,砷、铅主要附着于颗粒物上,除尘器对其具有协同捕集效果,但仍存在痕量气态硒传质驱动力差、细颗粒态砷、铅易穿透等瓶颈问题,严重制约了重金属的稳定高效捕集。“转化与固定”是重金属控制的总体思路,即通过化学组分调控与物理流场优化等方式,促进烟气重金属由细颗粒态、气态向粗颗粒态,由高毒性向低毒性转变,以实现重金属的无害化处理。基于该思路,目前已形成了一系列燃煤电厂重金属全流程控制技术,根据作用阶段可分为炉前、炉中、炉后3类,主要包括选煤、煤种调配、炉内吸附剂、凝并、脱硫塔内构件优化等技术。此外,燃煤副产物(脱硫石膏与废水)中重金属的稳定化问题需额外关注,可通过浆液原位固化或先进废水处理技术,降低副产物中重金属的环境释放风险,以上部分技术已通过中试或实际机组试验验证,具备较好的推广应用前景。为进一步发展燃煤重金属控制技术,提高我国重金属污染治理水平,对重金属控制技术发展进行展望:应开发实际燃煤中痕量重金属在线连续检测技术,实现重金属浓度实时获取;剖析多机制耦合作用下重金属转化行为与动力学特性,明晰复杂烟气条件下重金属详细迁移机制;建立燃煤重金属控制技术的评估体系,根据电厂特征、目标重金属、技术成熟度、经济性、环境风险等,提供具有针对性的重金属控制方案。
    免费下载
    洁净煤技术
    2022年第10期
    817
    317
  • 作者(Author): 周科, 李银龙, 李明皓, 鲁晓宇, 杨冬

    摘要:近年,可再生能源的快速发展提高了对电力供应系统灵活性运行的要求。未来几年燃煤机组深度调峰将成为常态。燃煤发电机组的灵活性改造是解决火电与新能源发展之间冲突的重要举措。为提高燃煤发电机组的深度调峰能力,提出燃煤发电-储热耦合技术。耦合技术能够实现热电解耦,提升机组的深度调峰能力与灵活运行特性,为新能源提供更多的上网空间。针对燃煤发电-储热耦合技术,论述了可应用于燃煤机组的3种物理储热技术:热水储热、相变填充床储热与熔盐储热技术,并分析3种储热技术的特点,提出未来3种物理储热技术的研究方向。总结评价储能装置热力性能的指标,包括蓄放热功率、无量纲温度、Richardson数、蓄放热效率。同时建立燃煤发电-储热耦合系统的调峰能力计算模型,将燃煤发电机组的电热特性与储热系统计算模型耦合,以此分析燃煤发电-储热耦合系统的调峰能力。提出燃煤发电-储热耦合系统合理的运行机制,建立评价耦合系统的热力性能指标:储热过程、放热过程与全过程的热效率、系统调峰容量与调峰裕度。构建燃煤发电-储热耦合系统的电热综合调度模型,模型包括目标函数与调度约束。其中调度约束包括电力平衡约束、供热约束、可再生能源出力约束、电功率约束、热功率约束、爬坡速度约束、储热装置的蓄放热能力约束、储热装置容量约束。以燃煤发电-储热耦合系统的电热综合模型作为调度系统合理安排配置储热后系统运行规划的决策工具,为电力系统提供运行规划策略。燃煤发电-储热耦合技术利用储热技术在热能利用方面的灵活性,根据外界热负荷的波动及时调节系统供热量,有效满足不同时段的热需求,增加了燃煤发电机组的调峰容量,达到提升综合系统消纳可再生能源水平、移峰填谷的目的,构建新型电力供应系统。
    免费下载
    洁净煤技术
    2022年第03期
    539
    527
  • 作者(Author): 吴小燕, 秦志宏, 杨小芹, 林喆

    摘要:煤炭因其碳含量高、储量丰富及价格低廉,而成为优质的多孔碳碳前驱体。以煤炭为原料制备超级电容器用多孔电极材料是实现煤炭高附加值利用的重要方向之一。研究表明,通过调整孔结构、改善表面化学活性均能有效提高煤基多孔碳电极材料的电化学性能。其中调整孔径分布可利用物理活化和化学活化联合、模板法和化学活化联合以及不同化学活化剂联合三种方法。物理活化和化学活化联合法主要是通过水蒸气或CO2对KOH活化过程进行辅助,在得到大量微孔的同时获得一定量的介孔,并实现煤基多孔碳孔隙与润湿性的协同调控。模板法与化学活化联合则可在获得与模板剂相同孔结构的同时,通过KOH活化进一步造出丰富微孔,从而实现合理的孔径分布。除使用模板剂外,也可利用碳前驱体自身含有的大量杂质充当自模板。采用不同化学活化剂联合的方法也能实现孔结构的调节,例如K+和Na+的离子尺寸不同,联合利用便可得到不同的孔径分布;利用KCl在高温下的流动性,可以将KOH的中间产物带入更广范围和更深层次,从而实现微孔向介孔的转化。改善表面化学活性则可通过炭前驱体预氧化和引入杂原子两种方式。如通过强酸或强氧化剂对原煤进行预处理,可以提高所制备碳材料的有机氧含量,增加活性位点并提高润湿性。通过掺杂剂掺杂可在碳材料中引入杂原子,其中应用最多的是N掺杂,所引入的含氮结构包括吡咯-N(N-5)、吡啶-N(N-6)、季铵-N(N-Q)和氧化-N(N-X)四种。此外,O、B、S和P也是常见的掺杂原子。另一种引入杂原子的方法是通过煤与生物质共碳化,此时生物质既充当碳源也充当杂原子源。杂原子掺杂可改善碳材料的润湿性、导电性和结构稳定性,并可产生一定量的赝电容。本文从以上这些方面综述了近几年来煤基多孔碳电极材料的研究进展,分析了不同改性方法的优缺点,并对目前研究所存在的问题进行了讨论,对超级电容器用煤基多孔碳未来研究趋势进行了展望。
    免费下载
    洁净煤技术
    2022年第01期
    628
    366

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联